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ABSTRACT

Research vas undertaken to investigate the possibility of
operating a multicavity magnetron at values of electrical and
magnetic field near the characteristic values. This would make
possible the scaling of the magnetron to very short wavelengths
before encountering difficulties with anode heating and magnetic
field limitations. The essential change in design for low field
operation is the use of a small cathode diameter.

An account is given of a familiar theoretical concept of
ordinary magnetron operation and this is related to the operation
at low fields. Eleotron trajectories are calculated for low field
conditions. The theoretical concept of low field operation is in
general agreement with experimental results obtained at this labor-
atory.

Experimental results are given for an 18 segment anode. It
is essential that a sharp cut-off curve be obtained to allow. for
low field oscillations. The violation of the Hull cut-off rela-
tion at high voltage places a limitation on tho voltage at which
it is possible to design low field magnetronse

PUBLICATION REVWIE

The publication of this report does not constitute
approval by the Air Force of the findings or the
conclusions contained therein. It is published only
for the exchange and stimulation of ideas,

FOR THE COMMWWNG GENERAME

Oolonel, USAF
Chief, Weapons Components Division

WADC TR 52-171 iii



TABLE OF C(XNT7NTS

Magnetron Types ......... . ..... . . . .. . .. .. ... . . ...... • .... ... 1

Traveling Wave Type 2agnetron.... ...... ......... .............. .. 2

Equations of Motion. . ......... . .. . . ........... *.. 7

Cathode Size for Normal T•pe agnetrons.......................... 20

Transition to Low Field..4... .... ... ............. , ............. . . 2!

The Electron-Electric Field Interaction.,........................ 25

Experimental Results43...... .................. .............. .. I3
Conclusions, . .. .. ... . .. .. . .. . ... . .. .*. . . . .. .**, . *. ***....... , ........ * . 59

Appendix I Planar and Cylindrical Magnetic Diodes................. 61

Electronic Motion, Space Charge and Cutt-off in the

Infinite Planar Magnetron, Classical Treatment............. 61

Symmetrical States for the Cylindrical MNgnetron........... 69

Electron Trajectories and Voltage Distribution............. 74

Appendix II Relativistic Effects and Cut-off,..................... 79

Cut-off in the Absence of Space Charge in the Planar Magnetron
79

Relativistic Cut-off in the Presence of Space Charge....... 83

Cylindrical G10ometry......... ....... ....................... 10

WADC TR 52-171 iv

A | | | l



LIST OF ILLUSTRATIONS

Figure Page

1. Mragnetron Outline Showinng Rising Sun Type Resonant Circuit.. 1

2. Resonant Circuits for Magnetrons, etc..................... 3

VADC TR 52-171 v



ANALYSIS OF MAGNETRON OSCILLATIONS

AT LOW MAGNETIC AND ELECTRIC FIELDS

Magnetron Types

Magnetrons have been used for many years to generate very

high frequencies. As the demand for higher frequencies continued,

newer types of mnagnetrons were developed to satisfy the require-

ments of high power generators. During World War II, the traveling

wave type or multi-cavity magnetron was developed to a high degree

as a pulsed generator for radar transmitters and as a high power

C. W. oscillator. Figure I illustrates in schematic outline a modern

traveling wave type oscillator.

,,anode segments

re son ators

Figure 1.

Magnetron outline showing rising sun type

resonant circuit.

Before discussing the electronic behavior of magnetrons, a word

should be said concerning the resonant circuit. Successful resonant

VfADC TR 52-171-1-



circuits for centimeter wave magnetrons fall into three general

classes: rising sun, strapped anodes and interdigital resonators.

It is usual to design the magnetron resonator to operate in the

w -mode, or resonant mode, in which there is 180 0 phase shift

from one- anode segment to the next. Since the magnetron resonator

has many resonant modes, it is necessary to suppress the undesired

ones, or move their resonant frequencies away from the w-mode. It

is not the purpose of this paper to discuss the way in which this is

accomplished. However, Figure 2 illustrates the three types of

resonators which have successfully accomplished this purpose. The

rising sun type was used in the experimental work (to be described in

later pages) since this type of anode is easiest to fabricate. Except

for minor differences, the electronic behavior is the same for the

different types of anodes. (1), (2

It is the purpose of this report to discuss the electronic behavior

of magnetrons at relatively lower magnetic fields and voltages than are

used in the conventional type operation of an oscillator of the same

size. (3)

Traveling Wave Type Mag~etron

In order to make clear some of the contrasts in the behavior of

magnetrons at low fields,. it will be necessary to point out some of

the characteristics of ordinary traveling wave magnetrons. A de

cussion of what happens in the magnetron interaction space (the -space
WADO TR 52-171--
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between cathode and anode segments) is most easily based on the

equations of motion and Maxwell's equations.

For the discussion of the electronic interaction, non-relativistic

mechanics will be assumed. Also, the effect of the magnetic field

associated with the alternating electric field will be neglected. Ap-

pendix II discusses the magnitude of the relativistic effects for planar

and cylindrical geometry. Planar and cylindrical inverted (i. e. ,

cathode on outside, anode segments on the inside) magnetrons have

been successfully operated, but the principal interest in this paper

will be the ordinary type interaction space, in which a cylindrical

cathode is surrounded by a cylindrical anode, as in Figure 1. End

effects will be neglected, and it is assumed that the anode current,

power input and output of the magnetron are proportional to its length.

With these assumptions, it is seen that the static electrical field is

radial. For convenience of analysis, vr-mode operation will be as -

sumed. It would be possible to keep a generalized notation, but this

would only complicate the algebra, and would not contribute to the

generality of the results. In the w-mode of resonance, the instanta-

neous angular electric field at the anode radius is as shown in Figure

3. The letter 0 is used for angle. Cylindrical coordinates are used,

and the magnetic field is in the axial 'or z-direction.

WADO TR 52-171 - 4-
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Figure 3.

Electric field at magnetron anode.

The electric field is zero at the tip of the anode segment or

vane, and alternately positive and negative at the succeeding gaps.

At the cathode, the angular field is zero. If it is assumed that all

alternating fields vary as e jt (real part being understood), then

the following relationships are obtained from MaxwelUs equations:

1 Hz(1
]Er =

= - ) 1H + 2 (3)

C 6 r r - 5+r OC Tr 52-171-Y 5 z+o/e .



where Er, Ep and H. are functions of r and , only but not functions

of t. This formulation neglects the effect of space charge on the rf

field configuration. Equation (3) has solutions of the general form

k Jm r) + k2 Nm (r)- ejmo

where k1 and k2 are arbitrary constants. The index m is an integer

and Jm and Nm are Bessel's functions of the 1st and 2nd kinds

respectively.

For a resonator with N gaps, there are N/2 complete cycles in

the electric field configuration around the anode. (See Figure 3.)

This requires that m have the values

N/2, N, 3N/2, . .

The magnetic field in the interaction space can be expressed as

+ '9 j(wt _Nn)
Hz 2 T {knl JNn/2 (P r + knZ NNn/2 (p r)1 e (4)

n= -00

The constants kni and kn2 must be determined from the boundary

conditions. Each term of this summation can be considered as a

component rotating wave. The angular velocity of rotation is

obtained fro m

nN@
-t -__ constant

2

or

A TR -at nN

-iVADC TM 52-171 - 6 -



+

Thus, the fastest of the component waves is the one for which n - 1.

The corresponding electric fields are obtained by substituting

equation (4) into (1) and (Z). There results

+00 j (4t -nNo)

Er = : nN RNn/2(pr)e (67

n=-c 2wEr r 6

+ CO j (wt nNo

= =- P g R (pr) e (7)

nM- O Jw E r Nn2

In these equations, the function - RNn/2 (p r) has been substituted

for {knl JnN/2 (J3r) + kn 2 NNn/2 (• r)}

Equations of Motion

Before discussing the rf fields any further, it will be instructive

to consider the mechanism of exchange of energy between electrons

and the rf field. A static radial field, and a constant axial magnetic

field with both radial and angular components of rf electric field are

assumed. The equations of motion of electrons in the interaction

space then are

2

d(m d- -mrd) =- e Er - B er d, (8)
dt dt4 dt) dt

and,

d=(mrd - er E9 + Ber d'-(9)

Here B is in the positive z direction.

WADO i'l, 52-171 - 7 -



The 1st integral of equation (9) can be written as

t r2
mr 2  = _ e f r E dt+ Be r rc (10)

dt to 2

where rc is the cathode radius.

In the first term on the right-hand side, r is to be interpreted

as the radius of a particular electron that starts out at the cathode

at t= to, and E is the angular component of the electric field at

radius r. It is assumed that do = 0 at r = rc and t = to. If r(t)
dt

oscillates with frequency w, this term can contribute a cumulative

effect. This case is of little interest, however, as the magnetic

field necessary to bring about this condition is relatively high. An-

other condition under which the integral can contribute a cumulative

effect occurs if the angular position of the electron varies in such a

way that E is always positive (or negative). The expansion for E0

(equation 7) shows that if the electron rotates with approximately the

angular frequency of one of the rotating components, this component

will cause the integral in equation (10) to build up cumulatively. The

component with the same velocity as the electron is the part of F-

which causes the effect to accumulate. All of the other components

of Eo then represent perturbations on the integral of frequency w,

Zw, etc. Thus, the principal effect of the rf field on the electron

velocities can be calculated from the single component of wave which

is traveling with nearly the same velocity as the electrons.

WADC TR 52-171 - 8 -



It is possible to see how to produce an electron stream traveling

with the same velocity as the rf wave by considering the behavior of

a static magnetron, with voltage below the cut-off voltage. Appendix

I considers the possible self-consistent space charge distributions in

the presence of a purely static field for both planar and cylindrical

geometries. Appendix I is concerned mainly with the V-I relationship

and with electron trajectories when the magnetron is conducting cur-

rent. If a voltage Va' less than the cut-off voltage, is applied to the

magnetron anode, electrons cannot reach the anode through static

fields. If ri is taken as the maximum radius that the electrons can

attain and V, the voltage at that radius, there must be a potential'

distribution inside the radius rl corresponding to a magnetron of

anode radius ri at the cut-off voltage, but conducting zero net cur-

rent. Outside the radius rl, the space charge is zero, and there is

a logarithmic potential distribution. At the edge of the electron

cloud, the radial velocity is zero. It is shown in Appendix I that

the potential and the angular velocity for the static magnetron are

given by

V dr_1 2 + (r ddN2 (1oa)2 e t(d t

and r 2- Be( 
l b

2m•=•" r 1 - r-C (10Ob)
dt r Z22

1~ m f2r Be2
From these one may obtain: V= 2 e mjrdtI + Be) r2l ) 1

WADC TR 52-171 - 9 -



and dV m d r ( Z)(2 r (Zir•r •V-•+• (r -c
-r r r2

It is seen that dV/dr is always finite. The radius rl is obtained

by matching voltages and voltage gradients at the boundary r1 . For

r >-rl the potential is

v- v Va Vi rn- (12)
In -ra r1

rn

The voltage gradient for r >rl is

dV Va - V1 1

dr In ra r

r,

Since the radial velocity is zero at the edge of the electron cloud,

VI_ m Be 2 rc2

V1 12 ( ) r1 ~(~ 2 (14)
2 e r

and, from iratching the gradients at the boundary

m d Zr BeZ2 2 r•- rI In r + ( -) r• (1 I( + •c (15)

It follows that

Va- r - + rJ (B (r? -r•)( + •)
+~2 In2a+ (a.

V a= rl "'-)+I r- a -2m( . ) ra _'rC2)

(ra ) r a

where Vc is the cut-off voltage (Eq. 107 Appendix I). In equation

WADC TR 52-171 - 10



(16), the radial acceleration d r is evaluated at the edge of the
dt2

electron cloud.

If a space charge configuration is assumed in which the electrons

move in circles around the cathode with zero radial velocity, this

term is zero. If, however, there is a double stream of electrons

as obtained in Appendix I for ra/.c very large, the radial acceleration

is not zero at the edge of the space charge cloud. For ra/rc small,

the acceleration at the edge of the space charge cloud becomes small,

and in fact, is zero for a planar magnetron, and for the cylindrical

magnetron with ra/rc up to about 2. 5. Figures 4 and 5 show rl/ra

plotted as a function of Va/Vc for ra/rc 1 10 and ra/rc = 1.5. For

the plot of figure 4, curves are shown for the assumption of single

stream and double stream where the accelerations are obtained from

the calculations of Appendix I. In figure 5, it is assumed that the

radial acceleration is zero at the edge of the cloud.

At the edge of the space charge region, the electrons travel

with angular velocity as obtained from equation (10b)

do - Be r 2

dt 2M

With proper adjustment of B and Va, one can clearly obtain an

electron stream which is traveling at the wave velocity. This

interpretation certainly omits some very important features of the

static magnetron. In particular, there is conduction of current

WADC TR 52-171 - 11 -
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below the cut-off voltage and back bombardment of the cathode. (4)

These phenomena are closely related. The violation of the cut-off

condition and back bombardment of the cathode become more pro-

nounced at high voltages, and must be a considerable factor in the

behavior of magnetrons at high voltages. The effect is undoubtedly

present at low voltages, but a theory which neglects these effects

should give a zero-order approximation to the actual behavior. This

approximation is illustrated by the relative success of the simplified

theory in predicting the operating voltages and fields and the elec-

tronic efficiency of the ordinary traveling-wave type magnetron.

A physical explanation of the mechanism by which the ordinary

magnetron oscillates is the following. Just before oscillation there

is a sheath of electrons surrounding the cathode. The outermost of

these electrons are traveling with approximately the same velocity

as the rf wave when it is present. Small rf voltages build up, and

the electrons lose energy to the traveling wave and move out toward

the anode due to the fact that their angular velocity is lessened. The

factor do/dt is very nearly constant in equations (8), (9) and (10),

after the electron departs from the electron sheath around the

cathode.

An electron, which is to travel ultimately from cathode to

anode, leaves the cathode and is accelerated through the space

charge sheath around the cathode. As it approaches the outside of

vaDC TR 52-171 -14 -



the space charge sheath, it experiences a retarding force due to the

rf field which is present. This rf field forces the electron to

maintain a relatively constant angular velocity. The dc field pulls

the electron out toward the anode. During most of the trajectory the

electron is controlled by the rf field. Near the cathode the electron

is accelerated outward and acquires angular momentum in essential-

ly a dc phenomenon until its angular velocity becomes wl , the angular

velocity of the rotating wave. At this time the angular velocity be-

comes essentially constant.

Denote as rI the radius at which the angular velocity do/dt be-

comes w, and call the voltage at this radius V1 . The angular velocity

CWl is, from equation 106 (Appendix I)

W1 IBe(- r (17)

Radial velocities will be neglected so that

e = V m w2 r 2  (18)

2 1 1

the total kinetic energy of the electron, which is rotational.

For the space outside r = rl , the assumption that do/dt - wl

and dr/dt = 0 in equation (8) results in

e (dV/dr) = (Be w, - m w 2) r (19)

Integration of (19) yields

2 (zr)

WAV" TR 5?-171 - 15 -



Equation (20) will be reduced to dimensionless variables using

V/V 0 and B/B 0

where V0 and Bo are defined respectively by

e V0  Imra 2 w (21)

and

2Mr

a

Thus it is seen that V 0 is the voltage necessary to give the

electron the velocity raw, and B 0 is the magnetic field which will

give the electron angular velocity we at the anode if it travels from

cathode to anode in static fields. In terms of these variables, the

Hull cut-off voltage, as given by equation (107), Appendix I, may

be expressed as

v/v 0 = (B/B0 ) 2  (23)

This equation is obtained by dividing equation (107) by equation

(21e adn then eliminating wl by using equation ( e2).

In equation (2g0l V1 and r, are functions of B in general.

The particular functions are given in (17) and (18), which may be

used to eliminate V, and r I in (20). Then, with r = a, there

results

V/V 0 = _B/B10 (24)
B0

WADC T hen 5 i2-171 - 16 u



This is the Hartree relation and represents the minimum

voltage that allows electrons to flow to the anode in the presence

of an rf field. (5) The graph (Fig. 6) shows the cut-off curve and

Hartree curve, in terms of dimensionless variables. The Hartree

curve is tangent to the cut-off curve at V V0 , B = B 0 .

4-

Hull cut-off

Hartree voltage

V 2

VO

BVB
3 oB

Figure 6

Normalized Cut-off curve and Hartree curve.

Normal traveling-wave magnetrons operate near the Hartree

curve at values of B several times BO. It is the purpose of this

discussion to consider the optimum type of operation at values of

B near B = B 0 . It is illuminating to consider the dependence of rI

(see equation 17) on B/B 0 near B = B 0 . Substituting for w in

terms of B0 (equation 22), one obtains

rZ 2 1 - I _ (25)

1 B r2 17-

WAD1 TR 52-171 - 17



The implications of this equation are considered in the follow-

ing discussion. Figure 7 shows the dependence implied in equation

(25) for various values of rc/ra. For each cathode size, rl = ra at

B = B 0 . To satisfy the requirements of the physical picture of the

electron- field interaction, the electrons must become synchronous

with the traveling wave at a radius where the rf field is strong

enough to change the electronic velocity. On the other hand, the

radius where synchronism occurs must not be so great that there

is no space in which the electrons can deliver energy to the rf field.

Since the synchronous radius is a function of both rc/ra and B/B 0 ,

the correct cathode size is dependent on the range of B/B 0 in which

it is desired to operate. If one considers the extreme case of

rc/ra = 0.1 and B/B 0 = 1.3, the radius at which the electrons are

synchronous with the traveling wave is 0.2 ra. At this radius the

rf field strength for an 18 vane anode operating in the T- mode is

approximately 2 x 10"6 of the field strength at the anode, as de-

termined by equation (27).

Thus even for relatively large rf fields at the anode, the field

strength at the radius where the electrons and the electric field

are synchronous is extremely small. If the rf field intensity is

less than that resulting from the noise fluctuations of the electrons

themselves, the electrons could not be expected to deliver energy

W'ADC TR 52-171 18 -
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to the ac field. If the cathode is too small, the rotating electron

space charge cloud is not coupled sufficiently closelyto the rf field

to allow the magnetron to oscillate in the normal manner.

Conversely, if the cathode is too large, the electrons do not

become synchronous with the rf field until they are almost at the

anode, thus not making use of the rf field. Also, the cathode partial'

ly shorts out these fields. This results in a reduction in efficiency

of operation.

In order to give approximately correct coupling, the synchronou's

radius should occur at approximately the radius where the amplitude

of the rf field is a given fraction of the amplitude at the anode. This

means that the ratio rc/ra is a function of B/B 0 , the ratio of mag-

netic field to characteristic magnetic field, as well as N, the number

of vanes. Figure 8 shows the value of r C/ra for various values of

synchronous radii as a function of B/B 0 . In every case, the cathode

radius approaches zero as B/B 0 approaches unity. From this one

m-ight conclude that to operate a magnetron very near the character -

istic magnetic field, one must have a cathode of very small radius.

Cathode Sine for Normal Type Magnetrons

The concept of energy exchange supplies a clue as to the cor-

rect cathode size for operation at values of B several times B 0 .

Since the curves of figures 7 and 8 flatten out as B becomes several

WADC TiR 52-171 -20
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C athode size as a function of B/130 for

various synchronous radii.
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times B 0 , the cathode radius should be relatively independent of

B/B 0 for a large range of B. Assuming that the resonator is to

operate in the r-mode, if the cathode is too small, or too far away

from the anode, the oscillator will have a tendency to operate in

the wrong mode because the electric field associated with the

proper mode may be too weak at the edge of the space charge

sheath. This may allow the magnetron to start oscillating in a

mode different from the proper one. On the other hand, if the

cathode is too large or too near the anode, oscillations will be

inefficient because part of the rf fields are shorted out. A formula

that places the cathode at approximately the correct distance from

the anode for normal operation is

rc N - 4c N-4 (26)

ra N+4

The tangential electric field at the cathode is, of course, zero;

but if the field Eo is calculated in the absence of the cathode, the

cathode surface comes at the radius where this field component

has fallen to about 3% of its value at the anode. Referring to

"equation (7), if there is no cathode, the function RNn/2 (p r) must

be replaced by JNn/ 2 ( pr), the Bessel's function of the first kind.

Since r a is a small part of a wavelength, JNn/2 (P r) can be re-

placed approximately by (Pri2)Nn/2 Considering only the
Nn/7 2

--,VADC TR 52-171 - 22-



fundamental space component of the wave, one has

E r N/2 - 1 (27)

EOa ra

where EOa is the amplitude of the fundamental component of the

traveling wave at the anode, and E is the amplitude of the same

wave at radius r. If Eo/Eoa is taken as 1/30 and r = r., one

obtains the design formula

rc 1 (28)

ra 1

30 N/Z - 1

This is compared with (N - 4)/(N + 4) for a range of N from 4 to

38, and with actual values used in normal traveling wave type

magnetrons in the following table:

N 1 N - 4 Value Used in
1 N + 4 Actual Tubes

30 N/Z - 1

4 .033 0. .152
8 .322 .33 .35

10 .427 .428 .500
12 .506 .50 .5 - .58
16 .615 .600 .59 - .66
18 .655 .637 .6 - .6z
20 .685 .667 .6 - .61
Z6 .755 .733 .707
38 .828 .81 .76

It is evident from the tabulation that the actual departure of

commercial magnetrons from the condition that rc - N - 4 is
ra N+4

WADC M11 52-171 - 23 -



about as great as from the condition imposed by equation (28).

Transition to Low Field

The picture of the mechanism of oscillation in the magnetron

must be altered somewhat to account for the phenomena at low fields.

It is well known that an electron stream traveling with very nearly

the same velocity as an rf wave will exchange energy with the wave.

(This is the operating principle of the traveling wave tube.) Suppose,

for exampleI that a very small cathode (say rc/ra = 0.-1) is used in

an 18 vane magnetron with B/B 0 set at 1. 2. The radius at which

the electron stream becomes synchronous is approximately 0. 25 ra.

For irr-mode operation of an 18 vane magnetron, the rf field would

not appreciably affect the trajectories at this radius. As the anode

voltage is raised closer to cut-off the electron trajectories will come

nearer the anode and into a region of greater rf field intensity. The

angular velocity of the electrons at a given radius is proportional to

B, the magnetic field, if the electron traveled to the radius through

static fields. Hence the velocity of the electrons will not exceed that

of the rotating wave by a fraction greater than (B/B 0 - 1) so that there

is still the possibility of energy exchange and oscillation for B/B 0

in the vicinity of 1. If a small cathode is used, the angular velocity

as given by equation 106 is almost constant throughout the trajectory.

However, as B/B 0 is made much larger than 1, the velocity of the
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electrons begins to differ too greatly from that of the wave, and there

is no exchange of energy. Thus for small cathodes, there should

be a maximum magnetic field at which the magnetron will work.

Also for small cathodes, the voltage at which the magnetron starts

to oscillate should be determined by the anode voltage necessary to

pull the electrons out to the region of strong rf fields.

In experimental magnetrons built at The Ohio State University

Electron Tube Laboratory, qualitative agreement with these con-

clusions has been obtained. These experiments are described in

detail in a later section. The following section consists of a

theoretical verification of the proposed concept of energy exchange

for magnetrons operating at low fields.

The Electron -Electric Field Interaction

A more detailed theory of operation requires the actual calcula-

tion of electron trajectories in order to obtain the electronic energy

at the anode and, hence, the electronic efficiency. In experimental

models built in the Electron Tube Laboratory, it has been observed

that the voltage-current relation is essentially the same whether the

magnetron is oscillating or not. From this fact we can conclude

that even in the absence of an rf field the trajectories pass close

to the anode. Figure 9 shows the cut-off curve, Hartree curve and

the voltages which are necessary to pull the electrons out to 0. 8

and 0. 9 of the anode radius, assuming rc/r a =0. 1. The last two
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curves are obtained from Fig. 4 and are approximately 93% and 98%

of the cut-off voltage. A reduction of 7% in voltage under oscillatory

conditions could certainly be detected experimentally; but a reduction

of 2% could not be detected with the accuracy of available instru-

ments. In fact, the wave guide tuner does have a very slight effect

on the magnetron current and voltage. If the tuner is adjusted to

give vigorous oscillations, the anode voltage at a given current is

1% approximately less than if there are no oscillations.

In Appendix I the potential distribution is obtained for a 2 -stream

condition in a magnetron at cut-off. Figure 10 and Fig. 11 show the

distribution assuming that the edge of the static electron cloud is 0. 8

and 0. 9 of the anode radius. Because of the space charge effects,

the potential is almost linear inside the space charge cloud for the

2-stream case. In fact, if the voltage gradient is assumed constant

and trajectories are calculated, they agree very well with those

calculated from the exact equations.

The potential distribution for the self -consistent solution below

cut-off in which the electrons all have zero radial velocity is also

plotted. In Appendix I, it is shown that there is no single stream

solution in which a net current less than about 3/4 of the Langinuir

current (less than the Allis Current) can be conducted. The only

possible space charge condition for small cathode diameters is the

2 -stream solution in which the arithmetical sum of the currents is
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the Allis current while the algebraic sum is the net current. This

matter is discussed more completely in Appendix I.

If a constant dc potential gradient is assumed, the differential

equations of motion are

d 2 ,r do 2 e Va e Ber
d2 r r__ -- Erac 0 (29)

dtZ dt m ra - rc m m

d (2 d Be dr (30)

dt dt m m dt

where the radial field is assumed to be

Va (1

Er = + E rac (31)
ra - rc

These equations should give a fairly good approximation to the

dynamic behavior of the magnetron if the space charge cloud very

nearly fills the interaction space.

The specific form for the rf fields must be obtained in order

to proceed with the dynamic solution of the problem. Since the

low field magnetron works best with a small cathode, approxima-

tions consistent with the use of small cathode radii will be used.

Furthermore, it is true of all practical magnetrons that the anode

radius is a small part of a wavelength-- so that P ra/Z is no

greater than 1/2.

The expression for the space fundamental component of the

traveling waves in the interaction region is obtained from equation

(4).
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Hzi - •k1 l JN/2 (p r) + k 1 2 NN/2 (p r)3 e j(wt - N- /Z) (32)

Substitution of this expression into equation (2) gives the correspond-

ing component of E .

E01= - j-- lJN/ 2 (j(r)+kw 2 NN/ 2 (p r) eJ(Wt -NO/2ý; (33)

It is necessary that E be zero at r rc. Hence,

k11 JN/ (P rc) + k1 2 Nk/z (p rc) 0 (34)

or

k2 =-kll J4ý 1 2 (prd (35)

N' (3rc)
kla= -k11 N/2 (5

Thus,

_ k ii Jql 2  (jr) -
-No/)

E#N NN/

(36)

The use of an approximation for Bessel's functions for small values

of the argument yields

NN/Z( p r) (N/z - 1)Y! N2 r12( 2 +/( + r/2)+

w (r) N/ N/ -. 1 2(N/Z -1)(N/2-2)

(37)

JN/2 (pr) = N (pr/Z)N/Z I - r/Z)N + (38)(N/Z):N/2 + 1

If ( r/2) is not greater than 1/2 and N = 18, the first term

of the expansions gives a good approximation to the functions. Thus,
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NN/2 (p (N/Z - 1) (N/2) 2 N/Z (39)

JN 1 (! r)= 1 (p r/ 2 )N/2 - 1 (40)

2 (N/Z - 1)?'

Substitution of these approximate expressions into equation (32Y

gives the result

k12 k .k (A rc/zN (41}
1 1 N/Z : (N/Z - 1:

Thus equation (36) becomes

N J(wt -No/t)

E0= -kl JN/2 (Pr) - v rc/2) N/1-) NN/Z(Pr e
j WEI N12 (N12 )

Consideration of a practical case will give an idea of the order of

magnitude of the two terms. Thus, let it be assumed that (p ra/2)

=0.5 and (A rc/2) = 0.05 andN = 18. Then,

7r (• rc/2)8. -33
( /_ .85 x 10 (42)

9! 8!

At (P r/2) 0.05, the two terms are equal and cancel out.
8

The first term increases as r , and the second term decreases
-10

as r . At ( r/2) = 0. 1 the ratio of the Ist term to the 2nd one

is 218. Thus the part of the field contributed by the Bessel's

function of the 2nd kind is insignificant compared to the Bessel's

function of the 1st kind. If only the Bessel's function of the Ist

kind and the Ist term in the expansion of this function are kept,
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equation (32) becomes

H C1 C (P r/Z) N12 ej(wt - NO/Z) (43)

In this equation, C is a constant to be determined by conditions at

the anode. For the evaluation of C, it will be assumed that the

average rf voltage along the @-coordinate line at r = ra is the same

as the average of the fundamental rotating components. For this

purpose, it is necessary to obtain the standing wave resulting from

oppositely rotating components. Thus,

*N/2 Z
HZ= 2C ( r/Z) (cos N0/2) ejt (44)

SNC p r/2)N 12 sin (N* /2ýejt (45)
ErI - jw r

SNC N2-1 jt
E01 2j E (r/2) cos (NO/2)e (46)

The * will be used to designate the sum of oppositely traveling wave

components. It has been tacitly assumed that E is symmetric about

the coordinate 0 = 0. This will happen if a gap in the anode is

centered around 0 = 0, as in Figure 12.

N

0 C

Figure 12
Orientation of magnetron anode.
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A voltage VIejWt will be assumed across this gap. The constant

C is determined from the condition

ir/N

j~ ýElr ado (47)

where E is evaluated at r = ra or

0V (48)

4 ( a/2)

Substitution for C in equations (42) and (43) gives

S(NV (r/ra)N/2 sin (NO/2) e9jct (49)r- (N1/4r) a

E * (NV 114r) (r/ra)N/2 cos (N€/2) e jct (50)

The equations of motion and the formulae for Er and E

will be expressed in terms of dimensionless variables

R r/ra (51)

S(Be) t = WLt (52)
2m L

Alternate forms of Erl and E., including time variation are

[ENV 1  (N/2 1)'
Re [El 4r V R sin (NO/2)cos (w'lL-+ c) (53)

a

r*1I NVl (N/2- 1)
Re N1R( cos (N€/2) cos (w/wLT+ ocr) (54)

In these equations, an initial phase angle oC- is introduced to

allow for electrons starting their trajectories at various parts of

the cycle. Real parts have been taken.

VADC TR 52-171 - 34 -



Another representation of the field is in terms of rotating

components. The rotating componentsof the wave are obtained by

expressing the products of the trigonometric functions in equations

(53) and (54) as the sum of the two functions using trigonometric

identities. The two resulting terms represent oppositely rotating

waves. The components which rotate in the +0 direction are

Erl- R(N/z -1) sin (/WLT - No/2 + 6-) (55)
8 ra

E1 =Nva R(N/2 - 1) cos (w/wL-" NO/2 +o) (56)E~-8 ra

If an electron stream is traveling in the +0 direction with

velocity very nearly the same as the rotating component of wave,

the component which rotates in the opposite direction will result

in perturbations of frequency 2w. Thus it is not possible for the

interaction of the electrons with the wave which travels in the

negative direction to be cumulative. For this reason, only the

component which travels in the +0 direction will be retained.

Substitution of dimensionless variables in the equations of

motion (29) and (30) yields

d2 R ze Va
d2R = R (do/dt)Z + ZR (do/dt) +

m L ra (ra -rc)

e Erac (57)
m h rac

m W 2 rL a
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dk(RZ d) d ZR dR e REoac
dt~ ~~~ dta c(8

d•. d• / dE m CLEra

Replacing Erac and Eoac by the expression (55) and ("6) gives the

result

dZR do 2 e Va-= R R- +ZR d +
de2  dt m OL ra (ra - rc)

+ e NV1  (N12 -1) sin (c/wL1E - NO/Z +OC) (59)

8m OL ra

A4_2 d ___) 2 d R dR - eNV1  RN/Z
47 R R co (co/oL't - NO/2 + 0ý)

dtE d'dt 8m ZLr

(60)

These equations can be further simplified by using the cut-off rela-

tion (equation 107) which can be expressed as

rV I 1 "'1 (61)e Vc m coL ra 1 2

a

The equations of motion become

dZRd22 R do Va 1+2 r)()1d+ -r 2_ 1 d t 2 -•
d Vc a ra

+ NV I (_C )R sin .L y) (62)
16V r 2  (WL 2Vc a

(R Zdo=R dR NV 1  r 2  (N/2 - 1)

dt dt dt 16Vc r(a + 2 )a TI L -(
",WADO liZ 52-171 - 36 - (63)



For any reasonable value of N, it is impossible to solve these equa-

tions analytically. A possible approach is to use a perturbation

theory, either in stationary or rotating coordinates. This does not

seem to be a fruitful course of action. Solutions were obtained for

equations (62) and (63) for a range of values of M and

NV 1/ 16 Vc (I - r7-/r 2) 2 for N = 18 and rc/ra = 0.1 using the

REAC analogue computer at Wright Field. A value of 1/2 was taken

for (Va/2Vc)(1 + rc/ra)(l - rc 2 /r2) . This means that Va = 0. 91Vc.

Under static conditions, the edge of the electron cloud is at R . 88

or .90 depending on the space charge configuration, as obtained from

Figure 4. This value is obtained from "exact" calculation of poten-

tials. The value obtained by the computer using the approximate

voltage distribution was 0. 875. An elementary calculation of the

static voltage at R ; 0.875 and of the cut-off voltage at this same

radius show the two to be the same, as expected.

The electronic efficiency is

= 2 - I m (64)

e 2 e-v
a

In this equation V 2 is the mean square electronic velocity averaged

over all of the electrons. The trajectories for the equations (62) and

(63) can be used to obtain electronic efficiencies for values of Va/Vc

different from 0. 91 by terminating the trajectories at a radius dif-

ferent from R = 1 or atradius ra Thus, if the trajectories are
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terminated at R = 0.88, Va/Vc would be equal to 1. It is only neces-

sary to take into account the fact that the normalizing factor is changed

in the dimensionless variable R. Actual electronic efficiencies calcu-

lated for Va/Vc = 1 were very low and could easily have been zero

within the accuracy of the computations.

However, this situation is changed if the trajectories are ter-

minated at R t-- 0. 905. This value was taken for convenience in read-

ing the computer curves. Actually, the efficiency changes slowly

with a small change in the radius at which the trajectories are stopped.

However, it was not possible to takc the value of R much greater than

0. 905 and remain within the capacity of the computer. At R = 0. 905

the static voltage is

VaI = . Va =.894V
.9

= .813 Vc (65)

V r 95 _(I -111
Vc (.905) ( - Vc = .82 Vc (66)

(I - 1/o00o)2

The static voltage at R = 0. 905 is designated by Val and the cut-off

voltage at R 0.905 is designated by Vc. Thus, from (65) and (66)
2 1

Va = 99 Vc

These calculations show that, for the anode radius assumed, the

anode voltage is 99% of the cut-off voltage. Also the electronic

efficiency is
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MV2

2eV I

2eVa

2 2

)? 22 inr( !ý +'dJ(R~ (67)

2 e Va t

where, as before, the bar signifies mean square values.

2 2
Substituting for mra wL from equation (61) results in

C ~aa

ý2 - Z

1 - .24 ( + ( dt(68)

Figure 13 shows 1(A)2 +(R •.t) 2 1 for values of or_ spaced 300

t(ýC dI:-

apart, for various values of B/B 0 and NVi/16VC. In each case the

velocity contributed by radial motion is negligible. If an electron

failed to get out of the interaction space in a reasonable time

(within the capacity of the computer), or if it returned to the

cathode, it does not appear on the plot. In no case did electrons

return to the cathode with appreciable energy.

The REAC computations can only be considered as a qualitative

indication of the actual behavior of the solutions to equations (62)

and (63). The plots of Figure 13 are scattered and discontinuous

because a small change in an electron orbit can make a large change
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in the number of loops that the electron makes between cathode and

anode; they do not represent inaccuracy of calculation.

A change in the phase angle of 300 may be sufficient to make a

large difference in the energy exchange. The electronic efficiencies

calculated on the graphs are based on equation (68), and the assump-

tion that the number of electrons leaving the cathode is independent

of phase angle o< . Furthermore, while the presence of space charge

is accounted for in the static voltage, space charge effects are not

included in the rf voltages. The values of mean square velocity are

shown, as are the electronic efficiencies under the various conditions.

The ratio of the maximum ac voltage gradient to dc voltage gradient

is also listed; this value is obtained by using equation (62) and the

constants used for the computation. The dc gradient is given by

Vat r r /

zcr a a

The maximum ac gradient for the principal component of rotating

wave is given by

NV - r 2 (N/2 -1)

16Vc r

Since the maximum values of Erac and E ac are the same,

the ratio of the two gradients gives either max Erac or max E~ac
Edc Edc'
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In the computations, XV. (1 + .. )(i - rc) was taken as

1/2; 1 1 - c had values of 0.2 and 0.4. At R = 0. 905,

ca

this gives the approximate values of 0.05 and 0. 1 for the ratios of

max Eac/Edc for the respective cases. A value forNV 1 (I- -

l6 Vc ra

of 0. 1 was also tried in the computations, but this field strength

was so small that it was not possible to get even qualitative calcula-

tions. The effect on the trajectories was so slight that the electrons

did not reach the anode in a reasonable time.

If it is aupposed that the electrons have a mean square velocity

equal to that of the traveling waves when they reach the anode, and

that radial velocities are negligible, the efficiency can be calculated

from

e VaO-e Vo (69)

e Va

In this equation, Vo is the characteristic voltage; and eVO is the

energy the electron must have to travel at the wave velocity. For

the particular case of Va/Vc = 0.99, and the values of 1. 11, 1.25

and 1.34 for B/B 0 , Va is 0.99(B/B 0 )2 or 1.22 Vo0 1.55 Vo and

1.77 V0 . These values correspond to efficiencies of 18%/, 36% and

43%, as calculated from equation (69). For B/B 0 = 1.25, the maxi-

mum efficiency, as calculated from the trajectories, is the same

within the accuracy of calculations obtained from equation (69). At
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the higher and lower values of B, the efficiencies obtained from the

trajectories is much less than that obtained from equation (69).

This is because the extremely simple picture does not include the

limitations placed on the allowable difference between the wave

velocity and electron velocity, for proper interaction between the

electrons and the wave.

The calculations give qualitative agreement with the concept of

an electron stream traveling with velocity slightly greater than an

rf wave delivering energy to the wave in a manner analogous to a

traveling wave tube. The fields in a magnetron, however, are dif -

ferent from those in the traveling wave tube in that, in addition to

a field component in the direction of travel E., there is a transverse

component E r- Also, the situiation is complicated by the fact that

the static trajectories of the electrons are not in relatively uniform

rf fields, as in the case of the traveling wave tube, but are alter-

nately in strong and weak fields. To illustrate this fact, electron

trajectories are s6hown for several values of QC for B/B 0 = 1. 25

and ma ac =0. 05 in Figures 14, 15 and 16.
Edc

Experimental Results

A series of experiments was undertaken to study the qual-

itative change which occurred when the size of the magnetron
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Figure 14
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Electron trajectory for B/Bo= 1.25,

maxEac .05 2 Tr

Edc 3

Figure 15
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E lectron trajectory for B/Bo 1.251

max Eac . 4"
EOc

Figure 16
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cathode was changed. It was found that as the cathode diameter was

decreased, oscillations at low fields became more stable, within the

capabilities of the cathode to emit. For small cathodes, the range

of magnetic field over which the magnetron oscillates becomes finite.

All of the tests were made with 18 vane rising sun anodes. The ratio

of cathode to anode radius for normal operation as obtained from

equation (26) is

rc/r 0 .636

As this ratio is reduced from 0. 636, stable oscillations are obtained

at lower fields. The best power output and efficiency at low fields

were obtained with rc/ra of the order of 0. 1.

Tests were made to determine the relation of the region of

oscillation to the Hartree line and the cut-off parabola. In Figures

17, 18 and 19, the shaded region is the oscillation region plotted in

normalized coordinates, for different magnetron anodes. The cut-

off curve is the one calculated from the theoretical relation. Since

the currents used were of the order of 0. 05 to 0. 25 of the Langmuir

current, it seems very unlikely that the oscillations actually occurred

at voltages above the theoretical cut-off since the magnetron was

operating space charge limited at the cathode. The experimental

error inherent in the system was enough to shift this region by a suf -

ficient amount to place it above the cut-off curve. In each case the

range of magnetic field is approximately
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1.15 < B/B 0 < 1.40

Plots of maximurm efficiency vs magnetic field are also shown in

the figures. The maximum overall efficiency is of the order of 10%.

Magnetron theories predict that the efficiency of the magnetron

goes to zero at B = B 0 , V = V0 . However, these theories are usual-

ly extrapolated from approximations made at high field conditions

and need not necessarily hold at low fields. The simplest of the

"high field" theories requires that the electrons reach the anode with

very nearly zero radial velocity and with angular velocity correspond-

ing to V0 volts. This results in a maximum value, as given by equa-

tion (69), for the electronic efficiency. For reference, this curve is

plotted in the coordinates of Figures 17, 18 and 19. This theory

certainly gives a larger value than is attainable since it neglects

radial velocities and the velocity acquired by electrons which return

to the cathode. It is very unlikely that the electrons would reach the

anode with average velocity less than the wave velocity. A less op-

timistic theory -- that the electrons have acquired the maximum pos-

sible energy when they strike the anode (6) -- states

V/B2(70)

This efficiency is also plotted on Figures 17, 18 and 19. We see that

the actual efficiency obtained is somewhere between these two estim-

ates. Rieke diagrams taken on all of the oscillators showed that the
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magnetrons had very nearly their maximum efficiency when working

into a matched load. Measurements of the Q's of the magnetrons

showed that in each case the resonators were critically coupled to

the load (i.e. ,QO = Qe) so thn+ the maximum electronic efficiency

is just twvice the maximum overall efficiency. Thus, the actual

electronic efficiency was comparable to the efficiency given by equa-

tion (69) and to that calculated from the trajectories.

The anodes had fin thickness ranging from 0. 007 inches to 0. 015

inches -- giving ratios of fin thickness to gap from 0. 37 to 1. 5. This

is listed in Figures 17, 18 and 19 as copper/space ratio. The anode

with the larger copper/space ratio worked at slightly lower fields,

but it did not attain as high an efficiency as for the other cases. How-.

ever, the electronic efficiency was comparable to that given by equa-

tion (69) at the particular fields where the magnetron oscillated best.

Figures 20, 21 and 22 show a different aspect of the performance of

the magnetrons where the power and efficiency is plotted in the V -I

plane. In each case the maximum efficiency occurred at a current of

about 0. 2 of the Langmuir current calculated at the characteristic

voltage V0 .

An attempt was made to operate a low field magnetron at higher

voltage than was used in the 3 cm. tube. For this purpose, the anode

diameter was held constant and the wavelength changed to 1. 6 cm.

In this case: N - 18; V 0 = 1,750 volts; B0 = 1,500 gauss.
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Normalized performance chart for low field magnetron.
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No power output data are available for this oscillator even

though oscillations were obtained at the proper wavelength. A

great deal of trouble was encountered with this magnetron because

of the difficulty in obtaining a sharp cut-off curve. It was observed

that the sharpness of the cut-off curve at voltages above 1,500o volts

is a very critical function of the cathode centering. A set-up was

built in which the cathode could be moved laterally during operation

of the tube; and the position was set for the sharpest cut-off. It was

observed while the tube was oscillating that the cathode position which

corresponded to minimum current at a given voltage also correspond-

ed to maximum intensity of oscillations. Furthermore, moving the

cathode as much as 0. 002 inches from the position of maximum

intensity of oscillations completely stopped the tube from oscillating.

Back bombardment of the cathode was observed, but a more con-

clusive study would have to be made before anything can be said on

this subject.

The degradation of the cut-off curve is much worse than would

be calculated on the basis of small dimensional changes; the fact that

small dimensional changes produced such a great change must be at-

tributed to the setting up of ac fields when the cathode is moved slight-

ly. (Long wavelength oscillations were observed under some circum-

stances when the magnetron was conducting below the Hull voltage.)
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At cut-off voltages below 1,000 volts, the cut-off curve is not

greatly affected by small changes in the position of the cathode.

Also, the efficiency of operation of the oscillating magnetron is not

critically dependent on cathode position, with a tolerance of about

0. 003 in. to 0. 005 in. on the axial alignment for good operation.

The voltage at which it is possible to operate a low field magne-

tron is limited by the violation of the Hull cut-off at high voltages.

An estimate of the limitation of low field operation, therefore, de-

pends on a more complete understanding of the violation of the Hull

cut-off condition.

Another type of limitation which has not been studied is the

effect of increasing the number N of resonators in the anode. The

characteristic voltage V 0 is independent of the number N of resonators

but dependent only on the distance from the center of one vane to the

center of the next one. The characteristic magnetic field BO, how-

ever, is a function of the number N. The characteristic voltage and

magnetic field are related by the Hull cut-off equation

2 2
eV0 (B + ~ e) r 2 ( rc

rJa

If V0 is kept constant, but the number N of vanes is increased, the

anode radius is proportional to N. Since the ratio r 'ra of cathode
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to anode radius is not a function of N for low field operation, the

characteristic magnetic field is proportional to the reciprocal of

the anode radius (or to 1/N). Thus, it should be possible to operate

with a smaller magnetic field as N is increased. The electronic

operation, however, is certainly a function of N, the number of

resonators, and this would have to be investigated b~efore any pre-

dictions could safely be made.
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CONCLUSIONS

The behavior of multiple circuit anode magnetron oscillators

has been studied at the lowest possible electrical and magnetic fields.

This type of magnetron operation affords very good possibilities of

scaling into the millimeter region since the power input to a given

size magnetron is relatively low.

The concept of the energy exchange at low fields, with small

cathode radius, is that the electron cloud fills up almost the entire

interaction space. The angular velocity of the electrons is 15% to

30% faster than the angular velocity of one of the rotating components

of the rf standing wave. Under these conditions, the electrons lose

energy to the traveling wave, allowing the tube to oscillate. This

concept is in agreement with both experimental results and theoretical

calculations. It is recommended that a study be undertaken to find

the effect of intreasing the number of resonators, and to find the

largest possible cathode diameter that can be used. The first objec-

tive could be done with continuously pumped, demountable tubes; the

demnountable tube is not suitable for the second objective. The highest

voltage at which it is possible to operate low field magnetrons is

limited by the violation of the Hull cut-off at high voltages; it is doubt-

ful if voltages greater than 3, 000 volts could be used. At anode

voltages much greater than 1000 volts, the cathode centering becomes

very critical and must be adjusted while the tube is in operation. A
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detailed study of high voltage limitations is not practical on the

dermountable system. A complete study of the limitations of low-

field rnagnetron operation requires the building of sealed-off tubes.
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APPENDIX I

Planar and Cylindrical Magnetic Diodes

The theoretical and experimental analysis of the static magnetron

has engaged the attention of many workers as a necessary preliminary

to understanding salient features of the oscillating magnetron. The

simplest static magnetron from the theoretical point of view is the

infinite planar magnetron. Unfortunately this is not true from the

experimental point of view. It is possible to build finite planar magne-

trons, but these are not the most useful forms. However, an analysis

of the planar magnetron can give a basis for the more difficult case of

the cylindrical magnetron. The orders of magnitude of the various ef-

fects, such as space charge and relativistic effects, in the planar

magnetron should give an indication of the magnitude of these effects

in the cylindrical case.

Electronic Motion, Space Charge and Cut-off in the Infinite Planar

Magnetron, Classical Treatment

For this discussion, it will be assumed that the ideal infinite

magnetron will be oriented so that the cathode and anode are parallel

to the y-z plane; the cathode being situated at x = 0, and the anode at

the plane x = d. The magnetic field will be taken in the z direction.

It will be assumed that there is no variation of quantities except in

the x direction. Newtonian mechanics will be used.
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The fundamental equations governing the electronic motions

are

mo X#1 f= = - e By' + e V/dx) (71)

mo y" f fy = e Bx' (7Z)"

The symbols have the following definitions:

mo equals the rest mass of the electron;

fx and fy denote the forces in the x and y directions respectively;

e equals the absolute value of the electronic charge (coulombs)

(e is to be taken as a positive number);

B equals magnetic flux density (Webers/sq. meter);

V equals voltage difference in volts

All distances are measured in meters. The ' symbol indicates

differentiation with respect to time.

It will be assumed that the electrons leave the cathode with zero

velocity. With this understanding, integration of (72) yields

mo y' = e Bx (73)

which, substituted into (71), results in

mo x1 = - e B (e Bx/mo) + e (dV/dx) (74)

This equation is integrable, using x1 as integrating factor. The re-

sult, using the convention that the voltage at the cathode is zero, is

I/z (x') = -(e B/mo)) (x 2 /2) + (e/mo) V (75)'

It is interesting to note that this equation was obtained without

a knowledge of the actual voltage distribution between the cathode
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and point x. For this reason, the cut-off relation in the non-

relativistic, or classical, treatment is independent of the presence

of space charge. This is not the case for the relativistic treatment.

The cut-off relation is obtained by supposing that the x velocity is

zero at the anode (x = d'. The substitution of this relation into (75)

gives the cut-off relation

e/mo Vc = (eB/mo)2 d 2 /4 (76)

where Vc is the cut off voltage Hereafter Vc will be used to

designate the cut off voltage as calculated by the non-relativistic

mechanics.

A detailed treatment of the actual variation of V with x in the

presence of space charge, and of the trajectories of the electrons,

requires the imposition of the divergence relation and the equation

of continuity of charge. These relations are:

Div D = e (divergence relation) (77)

DivJ = 0 (continuity of charge) (78)

In these equations D equals electric flux density, e equals

space charge density, and J equals total current density. For the

case of static fields, J is the convection current density and is

given by

J = ev (79)

where v is the vector velocity. For the case of variation of

quantities only in the x-direction, (77) becomes
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e d V/dxZ = (80)

where C is the dielectric constant of space. Similarly, (78)

becomes

ix = const. (81)

The substitution of the divergence and continuity relations into

(79) results in

Jx e (dzV/dx2 ) x' (82)

where x' is the velocity of the electrons at the x-plane. If x is

interpreted as the position of the electron at time t, and V as the

voltage through which the electron has fallen in time t, (82) integrates

to

ix t - E dV/dx (83)

where it is assumed that the voltage gradient is zero at x = 0.

(Assume space charge limitation, neglecting initial velocities.)

The substitution of (83) into (74) yields a differential equation

for the x directed motion of the electrons in the presence of space

charge. This equation is

x" = - (e B/m o ) x - (e/Cm 0 ) Jxt (84)

This equation is easily integrable, and has the general solution

Jx mot
x - C1 ,cos wo t+ C 2 sinwo t m- (8S)

Ce B 2  (5

where w• is the cyclotron frequency, eB/mo. It should be noted

that Jx is a negative number in these equations. The initial condi-

tions are that at t = 0, x 0 and x' 0 so that C1  0 and C 2
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= Jx/( E B wo). The resulting equation for x is

Jt a in Wo t
- (t (86)
E Bwo Wo

The y-directed velocity and the y-position are obtained by substitu-

ting (86) into (73). It is assumed that y is zero at t 0.

y' = (eB/mo) x (87)

y -JX/ B) tZ/2 + Cos ( )

CA0

The voltage at time t is obtained from conservation of energy.

Thus

V 2 X+ x (1- CoscWt)- (89)2 C - o0

The equations will be reduced to dimensionless variables to obtain

a better picture of their significance. Let

V - Vc (x 2/d 2 )
(90)

V
c

where Vc is the cut-off voltage as calculated in (76) . At x =d,

P has the physical significance of being the percentage increase of

the anode voltage above the cut-off voltage. Let

C= Jx/JL (91)

where JL is the space-charge-limited current density that would

exist if the voltage V€ were applied to the anode in the absence of

magnetic field.
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S 4½ C \ t 72 (Vc) 3/2 (92)
9 mo d2

The substitution of these variables into (96), (88 and (89), with

algebraic simrplification using (76) and (92) yields

x/d = 2•O/9 (/ o t - sin wo t) (93)

,Yd= 2OC/9 (+ cos Wo t - 13 (94)
2

2 2 (54 = ý 4 /81 (1 - Cos Wo t)z (95)

Equations (93) and (94)are the parametric equations of the

electron trajectories. Equation (95) gives the voltage at any point

along the trajectory. These equations were derived on the stringent

assumption of single velocities at a given plane. As will be seen

later, this assumption is very questionable at low currents.

If, in equations (93) and (95) , the substitutions are made that

x = d, w. t = w 0 ta = 8 where ta is the time of transit from the

cathode to the anode, the resulting equations are parametric rela-

tions between p3 and ac . This relation is the current-voltage cut-

off curve, and can be written

S= 4 o-.. 2/81 (1 - cos 0) 2  (96)

2
1 ZO /9 (0 - sin 0)

Figure 23 is a plot of , vs aC . At C = 9,/(4w), ) = 0 and for

values of c( > 9/(4w) the curve approaches the Langmuir current

(the current which would flow if there were no magnetic field). As
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oC approaches zero, e approaches infinity and the curve of P vs OC

oscillates back and forth, touching the line P = 0 at values of

0 = 2nrr where n is a positive integer, and reaching maxima at 0

equal to (2n + 1) 1T where n is, as before, a positive integer. The

first several maxima and zeros of f are tabulated in decreasing

magnitudes of o(_

n or, 13

1 .715 0
1 .4s .045
2 35e- 0
2 2F6 .0162
3 .239 0
3 .Z04 .0083

It is seen that the zeros and maxima are interlaced. As fari\as

the writer knows, this oscillation of the voltage in the uncut-off magne-

tron has never been observed. However, some writers imply that this

osciliation in the V - I curve is responsible for negative resistance in

the electron stream.(7)

The present calculation has been made for the planar magnetron,

but its behavior should be essentially the same as the cylindrical

magnetron with cathode and anode radii very nearly the same.

It is of interest to calculate the space charge density in the

electron stream. Equations (93) and (95)may be used as parametric

equations relating V and x. Solving (90) for V one obtains

V V CX2 +(98)
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Substitution into (80) gives the space charge density

- E (mo/c) W (99
P = - (99)

I - cos Wo t

Thus, at the values of t where wot = 2nTr, the elctron passes

through regions where the charge density is infinite. At these

same planes, the x directed velocity becomes zero.

The mechanics which has been used is reversible, so that An

electron could either proceed on out to the anode from one of the

space charge "striations, " or it could reverse its direction and

return to the cathode. In the plot of P vs o2 , p is zero (or the

anode voltage is equal to Vc) for any current which places a space-

charge striation at the anode. For any current corresponding to

W( >. 715, V is greater than Vc. It is possible to set up a solu-

tion for cw( < .715 with V equal to Vc by assuming a double stream.

For example, let it be assumed that the transit angle from the

cathode to the anode is io ta 2r, and that no matter what the cur-

rent, the numerical sum of the currents in the two streams is

. 715 JL" This would automatically satisfy the divergence relation,

giving the proper voltage distribution. Then to get the appropriate

net anode current, all that is necessary is to make the difference

of the two currents equal the net flow. In this way it is possible

to set up an infinite variety of solutions in the cathode-anode region

-- all of which satisfy the macroscopic electrodynamical equations.
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In many cases, two or more very different space charge configura-

tions give the same anode voltage and current.

Symmetrical States for the Cylindrical Magnetron

In order to obtain an understanding of the static conditions in

the cylindrical magnetron, the analogue of the calculations for the

planar case will be carried out. The divergence and continuity.

equations are

SDr ID + - Dr T" e (100)

a r r

Ir = 2iTr p (dr/dt) = current per (101)

unit length

The current Ir is a constant. All variables are to be considered

as functions of time t for an electron that leaves the cathode at

t = 0. By eliminating p from equations (100) and (101), and using

the definition of Dr, one obtains

rdZV dV dr Ir
- - + - - - -- (102)

dr 2  dr dt 2 rI E.

Integration of (102) yields

r dV Irt (103)
dr 2 T _

The initial conditions are that at t 0, the electron is at the

cathode where space-charge limited conditions exist so that dV/dr

= 0 at t = 0. The equations of motion for the electron in the sym.

metrical state are
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(d/dt)(rz (do/dt)) = (Ber/m) (dr/dt) (104)

and

d2 ridt2 - r (do!'dt)2 = (e/n) (dV/dr) (Be/m) r (do/dt). (105)

In these equations, B is the axial magnetic field. Integration

of (104) yields

r 2 (di/'dt) = (Be/2m)(r2 
- rC) (106)

The initial conditions for this equation are that the velocity, and

therefore dO/dt, is zero at r = rc, the cathode radius. The Hull

cut-off voltage can be obtained if it is assumed that the electrons

have zero radial velocity at the anode. Designate the cut-off voltage

as Vc, then

eVc = 1/2 m (ra do/dt)2  (107)

or

V = (m/2e) (Be/2m) r (1 - r-/rz )Z (108)caC a '

Substitution of equations (103) and (106) into the equation for radial

acceleration, (105) , results in

(d r/dt ) + (Be/2m)2 r - (Be/2m) (rc/r 3 )
Iret

-e - (109)
Zw G rm

This is the differential equation for the radius r of an electron start-

ing out at the cathode at t = 0, with a radial current Ir, and includes

the effect of space charge. Introduction of dimensionless variables

results in further simplification. Let
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S r/rc (110)

-C= (B e!/Zm) t I)

WL = Be/2m (112)

The angular frequency wL is the Larmor frequency. Equation

(109) becomes

d 2 S I Ir e -(. (1'3)dt2 +S Z 2 L3m
dt2 T3 2 7r E rc 2 m S

The constant in the right hand term of equation (113) can be

expressed in terms of the Langmuir current, or space-charge-

limited current which would flow in the absence of magnetic field,

with cut-off voltage applied to the anode. In equation (113) Ir is

a negative number. In keeping with this convention, the Langmuir

current will also be taken as a negative number, so that

3/Z

IL E= ' Vc (114)
9 -Vm ra

In this equation, p is a dimensionless variable, which is a function

of rc/ra, and is tabulated by Langmuir Using the cut-off relation

(107) and equation (1ý4) to eliminate wL from equation (113) re-

sults in

d 2S 1 ra 2 8 'r -(15

C112 S3 r 2 ra 36 2 Sc a I62 L

Equation (115) may be written as

dzS/d'T 2 + S - I/S3 . K ("/S) (116)
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w h e re r a- r c2 I (1 -7)

c a 36 P 2 IL

The graphs in Figure 24 shows solutions plotted for K ranging from

1.6 to 16. These solutions were obtained using the REAC analogue.

computer. It is characteristic of all of these solutions that at the

first zero of dS/d-C , not counting the one at 'C = 0, dS/d-t becomes

negative. The calculation has no physical significance for r greater

than this value. The situation is not so simple for smaller values of

K (K -1.6). For values of K< 1.6, the graph of dS/d C vs Z changes

its nature, dS/d t no longer becoming negative at its first zero

"-C 0). When dS/d T becomes zero, but does not become negative,

there is the possibility of more than one space charge striation.

Calculations of Hartree, (8)(9) Allis, etc. , indicate that space charge

striations are possible for values of S up to about two and one-half.

There is no self consistent solution which allows more than one stria-

tion, and which has a striation at a normalized rasius greater than

two and one-half. The smallest current at which a single stream

solution which has just one striation is possible is called the Allis

current, and is usually about 3/4 of the Langmuir current. This

current places a space charge striation at the anode.

These considerations lead to the conclusion that for the static

magnetron, with ra/rc > 2.5, operating at the cut-off voltage with
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space-charge limited current less than the Allis current there must

be a double stream of electrons. The arithmetical sum of the cur-

rents in the double stream is equal to the Allis current, so that the

potential distribution is the same as if the magnetron were operat-

ing at the Allis current The difference of the two currents gives

the net current flowing to the anode. This simple picture of the

behavior of the static magnetron does not explain conduction of cur-

rent at voltages below the cut-off, as found by Jepsen. 40) However,

it seems reasonable to suppose that for currents that are a fairly

large percentage of the Allis current (and voltages at cut-off voltage)

the theoretical interpretation is fairly complete. Low field magnetron

oscillations have been observed at currents of about 0. 05 to 0. 25 of the

Langmuir current. It should be pointed out that there exists the pos-

sibility of a single stream solution in which the electrons rotate in

circular orbits around the cathode for the magnetron at cut-off. This

solution does not allow radial flow of current, however.

Electron Trajectories and Voltage Distribution

In terms of the dimensionless variables r and S, the equation

(106) for angular velocity is

d(/d T (I- 1/S2" (118)
r

0 "C Jdt/S2 (119)
0
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Using the solutions for S, it is possible to obtain the electron

trajectories by evaluating the integral in equation (119) . Figure 25

shows trajectories for ra/rc = 2.5, 5, and 9.8.

The voltage at a given radius is given by

eV =12 .dr 2 ) (120

-r +r 2 'IV)

Substitution of dimensionless variables into (120) results in

eV =-I rn r2LW2 -dS. 2 + d2 o 2 (121)

Dividing this equation by the cut-off relation (107) and substituting

for (dO/dt) from (118) yields

V rz dS 21 2

V r2 lr 2/r)z 1 (t SZ)I - (122)Vc r?- (1 - rc/rad
a a

Figures 26 and 27 show V//V c as a function of S for

ra/rc = Z. 8 and 9.8.
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Figure 25

Electron trajectories for the static magnetron.
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Figure 26

Voltage distribution in static magnetron at cut-off,

ra/rc = 2.8.
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Figure 27

Voltage distribution in static magnetron at cut-off

ra/rc 9.8.
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APPENDIX II

RELATIVISTIC EFFECTS AND CUT-OFF

The relativistic effects occurring in an electrodynarrmical

system such as the magnetron are completely accounted for by the

change in the mass of a particle due to its velocity and by account-

ing for the electrical and magnetic fields of moving charged par-
(11)

ticles. The change in the mass of the particle is accounted for

by using the relation (127' between mass and velocity. The electrical

and magnetic fields are accounted for by obtaining completely con-

sistent solutions to Maxwell's equations.

Cut-off in the Absence of Space Charge in the Planar Magnetron

The assumption of no space charge effects makes the analysis

applicable to the case of a single electron being released at the

cathode, and allowed either to be captured at the anode or else to

move out to a maximum distance from the cathode and then to return

to the cathode. For this case, the force equations may be written as

fx d/dt(mV (-eB) dy/dt + e (dV,/dx) (12•)

fy = d/dt (mvy) eB (dx/dt) (124)

In these equations the mass must be considered as a function o,

velocity. The coordinates are taken as in Appendix I. Since space

charge effects are neglected, B is independent of position and time;

V is a function of position but not of time. With these conditions,
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(124) can be integrated and becomes

mvy = eBx , (125)

where it is assumed that the electron is released from the origin

of coordinates with zero velocity. Substitution of this relation into

(123) and integration yields

I (mvx) 2 + 1 (eBx) 2 = e dV (MV dt) (126)
2 2 0 dix

The relation between mass and velocity is

( u -

where m . the rest mass of the electron;

u - total velocity of the electron (u 2 = v 2  +v)x y

c velocity of light.

Alternatively, this equation can be written as

u2  c 2 (1 -moi2 /n) (128)

The equation (126) for x velocity can be rewritten with the aid

of (125) as

e X m d dx = m (v + v) mu2  (129)

m dx 2 y 2

Substitution of (128) into (129' gives the result

1 2 (m2 _ m 2 dV
T c - ) e m - dx (30)
AD dx
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Differentiation of this equation with respect to x gives

c 2 dm = e dV (131)

This result is in accordance with the relativistic expression for

kinetic energy, namely, the kinetic energy is the difference between

the relativistic mass and the rest mass times the square of the
(12)

velocity of light. Equation (131) shows that there is a linear

relation between mass and the voltage through which the charged

particle has fallen. This is a special case of a more general

proposition that, for point masses,

S
kinetic energy = c 2 (M - in 0 ) = F • ds , (132)

0

where F is the force on the point and ds is element of arc.

In the present case, the part of the force due to magnetic field

does not contribute to the integral since it is perpendicular to the

velocity so that fF. ds equals eV. It is possible with the aid of

the various proportionalities which have been derived to calculate

a relativistic cut-off expression. First, it will be assumed that the

x-velocity at the anode is zero. Equation (125) gives the y-velocity

at the anode in terms of mn if d is substituted for x. When this is

substituted into equation (128), which retates mass and velocity, an

equation relating m and B results. This is equivalent to a relation

between B and V, which is the cut-off relation. For convenience,

VADC TM 52-171 - 81 -



the pertinent equations are listed.

vy eBd/m ; (133)

V2 c (1 m 2 /m 2 ) (since v =o); (134)
y0

c 2 (m - mo) eV (135)

The cut off relation is

eVcl e2 Vc eBd 2

2 + -2 c4 16

m0 c 2  m c4  
- no

where Vcl is the relativistic cut-off in the absence of space charge

effects. To get an idea of the relativistic effect, equation (136)

will be reduced to dimensionless variables. Let Vc be the cut-off

voltage, neglecting all relativistic effects. Equation (76) gives Vc

ds "i (mO/ e) (e Bd/mo)2

Let Y be defined as the ratio of the relativistic cut-off to

the classical cut off voltage

Vc1 (137)

Vc

Then from equation (136)

(1+ c" x 1 . (138)2m c2

The aubscript is used on Y I so that a similar notation may be used

in the consideration of the same problem, including space charge

effects. It is of interest that, while space charge did not affect the
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calculations of the classical cut-off, there is a significant effect in

the relativistic calculations.

The coefficient 1 (e/mo) c2 appearing in (138) is an absolute

constant, the size of which determines the magnitude of the relativ-

istic effect. This constant has a value

1 e/M0 c 2 .0.98 x 1 vot 1 (139)

Figure 28 is aplot of Y1 vs Vc. At Vc= z5 x10'4 volts, the

relativistic cut-off is approximately 5% less than the classical cut-

off .

Relativistic Cut-off in the Presence of Space Charge

A complete estimate of the relativistic effects on cut-off in the

planar magnetron must include the effects of space charge. In order

to set up a possible space charge condition in the planar magnetron,

the classical results will be used as a guide. In the Brillouin steady

state, it is supposed that the electronic motion is entirely parallel

to the cathode surface, with zero velocity perpendicular to the

cathode and anode surfaces. In order to maintain this motion, the

force due to the electric field must exactly b*Llance the force due to

the magnetic field. Figure 29 shows the directions of the various

velocity, field and force vectors in relation to each other and to

the system of coordinates which is being used.
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Figure 29

In the figure, f E is the force associated with the electric field; fB

is the force associated with the magnetic field. The vector I is the

current associated with the electronic motion with velocity vy* it

is seen that the effect of the magnetic field associated with I is to

decrease the magnetic field at the cathode relative to the anode, or

to increase the magnetic field at the anode relative to the cathode.

Thus,
x

B - Bc f i y dx (140)

0

where J y is the y component of the current density vector; B. is

the magnetic field at the cathode. The permeability of free space

is given by p . Alternatively
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d

B- B a+ . J 3ydx (L4V

x

where J y and p are as before and Ba is the magnetic field at the

anode. In each case Jdy is given by p vy, and since p is negative

and vy positive, Jy is negative (for the particular orientation of

coordinates and field which have been chosen). The various equa-

tions which must be satisfied simultaneously include the divergence

equation and the force equations (123) and t124), as well as equa-

tions (140) or (141) which give the variation of the magnetic field.

The divergence equation is

'.Dx p - (dzV/dxz) (142)

The further assumption of conservation of energy will be made.

The relativistic statement of this is

(m - ioo) c 2 V eV (143)

For the condition of no current to the anode 'assuming single

stream), dx/dt must be zero and dy/dt independent of t. It is con-

ceivable that there are other solutions where these conditions do

not hold, and (formally at least) there is no anode current. Such

solutions would be multiple velocity solutions and are discussed

in a later section. As a consequence of the single stream condi-

tions, the force on the electrons is zero. It follows from setting

the force equal to zero that
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eB (dy/dt)- e (dV/dx) (144)

eB (dx/dt)= 0 (145)

The law relating mass and velocity (Eq. 127V gives dy/dt in terms

of mass m; equation (143) gives voltage in terms of mass. Substi-

tution in (144) results in an equation which involves only the mass

of the particle. From (1i), with u- v

2
2 c 2 (I - mo/m 2vy 0 1

and since from (131), c 2 d m = e dV, (144, becomes

1
eBc (1 - mo/mZ)Z 0 c2 drn/dx (146)

where B is given by (140), (142', (131), and (127) as

x IB + AEof c2  d2 m 22

B(1 = mB/m 2 dx (147)
e dx 2

or, from (141) as

B Ba drn- c m m )dx148
e dx2

x

Note that whichever expression is used for B

dB/dx z (c/e; (i - mo/m2t (d2 /dx 2) (149,

where 1/c 2 -6

Thus it is possible to obtain a differential equation which

contains only m by solving (146) for B and differentiating. The
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result is

dB _ c d dm/dx (150)

dx e dx (1 - 221/2

(1 - mro/mn/ (d m/dx2 ) d dm/dx (151)
dx 1/2

Equation (151) reduces to

m(d 2 rn/dx2 ) (dr/dx'2  (152)
1 - rn2/rnZ

This equation has the solution

r = mo cosh ( Sx + a7 (153)

where 6 and a- are constants of integrations.

Since rn = mo at x 0, 9- = 0, so that

rn = mo cosh 8 x . (154)

The condition of space charge limitation is automatically taken

care of since dV/dx = c 2 /e (dmr/dx• = 0 at x - 0. To evaluate ,

the conditions at the anode must be ernployed; thus

(m- rno) C2 =eVa, at x = d(155;

This results in

(Mo cosh S&d - mn' c2 - eVa (156)

or
cosh & d - I + (eVa)/((moc) .(157)

The magnetic field B is obtained by substitution of (154) into

(146)
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(c/e' (dm/dx)
(1 = m2i;Z)1 / (158)

or

B z ( S cno/e) cosh x (159)

Bc = cmo/e (160)

Ba = ( S cmo/e) cosh • d (161)

Equations (160) and (161), together with (157) give the cut-off condi-

tion. For example, if it is assumed that the magnetic field at the

anode is the same in the presence of space charge as in the absence

of space charge, (161) and (157) give the relation between cut-off

voltage and magnetic field in terms of the parameter S

The choice of boundary conditions for magnetic field depends on

the way in which the current loop associated with the electron stream

is closed. Thus, for cylindrical geometry, the field at the anode

would be equal to the field in the absence of space charge since the

anode is outside the current loop associated with the electron stream.

The relationship contained in (157) and (161) approaches the

classical situation if Ba -'0 (or 6+0). Keeping terms of the order

62 in the expansion of (157) and (161), one obtains

1 + eVa/mo c 2 =1 +I d2/12 (162)

and Ba 5 cro/e (163)

Elirmination of 6 from these equations gives the classical cut-off

relation.
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Let V2 be the relativistic cut-off in the presence of space charge

as derived on the basis of the extremely simple picture of parallel

flow of electrons, with a single velocity function. The dimensionless

ratio ?r 2 is defined by

2 VZ/Vc = V?/( 1 B2 d2 e, (164)T a i-'os

In terms of rz the parametric relations are

1 + Vc e/(m c 2 )= cosh 6 d (165)

[2Vc e/on~cz)] 1/2 d cosh 6d (166)

The information contained in these equations is presented

graphically in Fig. 30 with •'2 plotted as a function of Vc. At

Vc = 50 kv, the relativistic cut-off is 88% of the classical cut-off

voltage. This compares to 95% for the case of no space charge.

The restriction to a single stream is a very serious one

since it is known that (at least for non relativistic rmechanics,

"a rmultiple stream can exist. The presence of space charge makes

"a significant difference in the calculated cut off, as has been seen.

The existence of a possibility of a double stream was noted in the

classical case as a consequence of the very simple calculation of

the electron trajectories as based on an assumption of a single

stream to the anode. This is not possible in the relativistic case

because of the non -homogeneous nature of the problem. The
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effect that a double stream would have can be calculated easily to

a first order of approximation since the magnetic field at moderate-

ly large voltages is the same whether a relativistic, or classical

space charge solution is used. With this in mind, the magnetic

field associated with a double stream of electrons will be calculated;

the space charge density and velocity will be obtained from the

classical calculations. Of course, these calculations are of

significance only when the magnetic field of the stream is small

compared to the static magnetic field. The voltage distribution

and electron velocities will be taken as in equations (39) and (86),

Appendix I. It will be assumed that there is zero net current to

the anode, but that the electrons have velocities in the x direction.

Current density and magnetic field will be calculated for this condi-

tion. The calculation is complicated by the transcendental nature

of the equations defining the state. From Appendix I,

2 e 0 2 z- ' o (167)

In these equations, Bo is used to indicate a zero approxima-

tion to B.

X = - t-- sin wo t (168)

E"•o Bo (Ao

dy/dt = eBox/rmn (169)
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The equation relating x and t is bi-unique, but its transcendental

nature does not allow solution for t in terms of x. The use of the

equations implicitly will circumvent this difficulty. The x-velocity

dx/dt is given by

dx i Jx (1 - cos ot (170)

dt E 0O Bo

To calculate the space charge density, the procedure will be

to follow an electron that leaves the cathode at t = 0, and calculate

the space charge density along the trajectory at each tir:me t. Using

implicit differentiation, one obtains

dV MO( o - ix}
= -v x+ - sin wo t 171)

dx e 0 r Bo

d2V 2 1 (172)

dx2  e - cos o

The space charge density is given by

S ' f{ 1 cos(173)
e 1 - Cos cWo t

For the double stream of the hypothesis, in which there is a

total current Jx (adding the absolute values of the densities in the

two streams) and a net outward current of zero, the velocity must

be zero at the anode or at x = d. This requires that Jx have certain

discrete values, depending on the number of striations, or regions

of infinite space charge density, between anode and cathode. The
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magnetic induction of the electron stream is obtained by substitution

into (140>. The variable of integration x can be replaced with time

t, integrating to the time which corresponds to the particular x

plane. Thus

x x

B B - J/' Jdx =Bc + iA mo W 0  Y1x
oe I - Cos W t

0 o0

J ~dx dYdx has been obtained from equations (173), (168), (169),Jy dx 't"

and (170). The result is
t

c02 B 2o Bo CosB =Bc + 0c2 B (2 xB [t (oswt (174)

0

The allowable discrete values of Jx are obtained from equations

(96), (91) and (92). It is necessary that the transit angle be Znir

where n is an integer in order that the x velocity be zero at the

anode. From equation (96)

9 (175)

4n-r

From (91), (92) and the classical cut-off relation 76)

x nitYin0  3/2

n ~ 3 dZ

Jx= . n_ d (176)
niT e 2

When this value (eq. 176ý is substituted into equation (174), the

result is - 94 -
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d2 3B 2 �2e • t
d e/ (/wo t)1

B = B + + cos cot (1714 n2 2 c2 2 0 t

This equation defines the first approxiroation to B at the x plane.

To find the total effect on the field, the 'value of t at the anode must

be used. This value is wo t = 2nir. T iq substitution yeikfs

2 3e B0Ba Bc + 2 i (178)
? ;

'I.

If •,d is assumed small, in equations (f57), (160) and (161), and if

expansions are used for the functions, thp same relation between Ba

and Bc may be obtained. Thus, to the first aproximation, the total

reduction of the field at the cathode is the sarhe' for the single stream

as for the double stream configuration. The details, however, are,

different. In each case

eVc
B=B +B f (x/d) (179)

For the single stream, expansions of equations (157), (159), (160),

and (161) retaining only terms of the order 2 results in

2,

f X.. (1 80)

For the double stream, f (x/d) is an implicit function of (x/d) and,

is obtained from the cut-off relation (76), and equations (168), (1 7')'

and (177). This implicit relation is "
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x 1
-- (0 - sin e)d 2n-r

(07/2) + (cos e - 1)
2 ir 2 n 2

Figure 31 is a plot of the functions of x/d for the single stream

case, and for the double stream case with n = 1.

To carry the approximation further, it will be assumed that

B(x) is given by a function as in (179), which will be used to re-

calculate the electron orbits. The relativistic expression for the

y velocity is
x

dy/dt = e/m JBdx (182)
0

For the cut-off condition vx is zero at the anode so that

d

u - dy/dt - e/m r Bdx = c (I - mo2/rnr)l/2 (183)

0

Use of the relation (143) between m and V results in

V e+ e- (eBdx (184)
2m° c 2m 0

It will be assumed that the magnetic field at the anode is the

same as the field in the absence of space charge. With this as-

sumption, (178) and (76) may be used to express (179) as

B = Bo 1 1+ 2f (179a)
moCc7mo c -
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Substitution of this general form for the variation of B ( 179a) into

equation (184) yields the general form of the cut-off relation. The

result is

V

V+eV 2  e -rc + eVc f i- (185)
2moc 2  Moc mo c2

0

For the special case of a single stream, from (180 f(x/d-d

(x/d)2 , and the cut-off relation is

eV c 2 e Vc_ 2

v eV 2 + Vc 1 (186)
2mocL 3 moCJ

For the case of the double stream, the integral can be calcu-

lated graphically. For the case of only one striation, it is equal to

approximately 1/5. This results in the cut-off relation

eV 2  -icI- 4 eVc 22 m i1 (187)
V+2mo c 5 Vc• 5

Let /2 = V/Vc for the single stream calculation and =

V/Vc for the double stream calculation. The cut-off equations

become

1 + y2 4 Vc 2(18
r c106 3 1881)

and+ y.-c % F 1 (18 9)ad2 106 Y . 5 1061

The variables r" and •2 are shown as functions of Vc

in figure 32.
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The use of the classical solution for space charge density and

velocity to calculate the z magnetic field neglects effects of the

order (eVc/moc 2 )2 . This is less than 1% for voltages up to 50 kv.

Figure 32 shows the effect of the approximation for the single

stream case. The exact plot of is included for reference.
Y2

Cylindi-ical Geometry

The pertinent algebraic equations embodying the space charge

effects, magnetic effects, conservation of charge, etc., for

cylindrical geometry are listed:

Z D r I D
+ -r Dr (190)Or r

SH _ (191)

Sr prdt

These equations are the divergence and curl equations for

electric and magnetic fields, respectively, from macroscopic

electromagnetics.

d m -- mr Idt) = e v -Bzer do (192)
dt dt dt dr dt

d mrzd) = erB dr 0(93)
di dt)

These equations are the relativistic equations of motion of an

electron with charge -e in cylindrical coordinates.

(m - mo) c =eV (194)
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m 22 (195)(I-ul/cZ /

2 2 oim
u =c ( -n./ ) . (196)

These equations are the relativistic statements of the relations

between mass, velocity (u) and kinetic energy. As a first approxi-

mation to a solution, it will be assumed that B. is a constant equal

to B., the magnetic field in the absence of space charge. This allows

calculation of the trajectories to get an estimate of Bz. Recalcula-

tion of the electron trajectories should give a close estimate of cut-

off for moderate voltages. The initial calculation of the trajectories

will give the cut-off in the absence of space charge effects. Integra-

tion of (193) with the assumption of Bz = Bo, a constant, results in

do Boe -(

- l - rc2/r2 (197)
dt 2m

When this result is substituted into equation (192), this equation

can be integrated, and the result is

dr2 BO2 22/2 2 4 r r)m "dr, e r-rc + r+
2 t 4 2 2r 2  2

e 2 V2
-' + mo eV (198)

2c 2

This equation was obtained without knowledge of the variation

of V; it depends only on its value at the limits of the integration.

To obtain the cut-off condition, set dr/dt u 0 at r - ra. The result
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is 2 2 r

V(I+eV ) Bo era ) (199)
zmoC 8 mo ra

The low voltage limit of this expression is the Hull cut-off

formula and is

B er r2 ) 2
Vc= 0,a - (20)

8 mo raz )

Re-expression of the relativistic cut-off equation (199) in

terms of the dimensionless parameter Y1  V/Vc gives

eY I r ) . 1 (201)
( 2mo cz

This is the cut-off relation in the absence of space charge ef-

fects; it is identical to (138) which is the analogous relation for

planar geometry. To obtain an estimate of the magnetic effect of

the electron stream, an estimate of space charge density must be

obtained. It will be assumed that the electrons move around the

cathode in circular orbits with the forces just balanced out. A

completely consistent solution was obtained in the analogous situa-

tion for the planar case. If the same techniques are tried for the

cylindrical case, a singular differential equation is encountered.

The type of singularity makes this equation very difficult to handle.

However, effects on the magnetic field of the order of eV/moc2 can

be calculated using the class&ýal space charge density and velocity.
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Thus, assuming dr/dt = 0, do/dt is given by equation (V17); V is

given by 1(200) where the general radius r is substituted for ra. Thus
B2 e 2 2 2

( - r1)2c (202)

8 r0r

Substituting into equation (190) for Dr gives the space charge

density as

4
E =- - Bo2  e 4++ r.c , (203)
8 0 mo r4

Variation in magnetic field is given by

dBz do (204)

dr z-./fr dt

This is easily integrated, and gives

(r r 2  r4 6rr
0Bc+ - rc

4 4m2 c2 2 4 2rz 4r4 r

Use of this value of B in equation (193) to find the first

order effects on velocity will make possible the calculation of

first order effects on cut-off voltage. Thus

m2 do Jr
mr - . e r B dr

dt S z
rc

r 323 2 4rBo e r3 r rc r
= e R Bc r + ,\c_ --4 Z

rC

6

+ r r r 2 1 n rj dr (206)

4r3
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The integration yields

B~2  4 r 4  r2 r2
m --d(r 2 - 4mZcZ r 1

dt 2 k8 8 8 8r 2

r4+ r 2 r 2
_____ .___ (207)

2n

If it is assumed that the magnetic field at the anode is the same

as the field in the absence of space charge, thereby eliminating Bc

from equation (207), (207) becomes

mr 2 do eý -o (rB2 r 2 ra 2
Ba -r ar -c2 ar rc

dt 2 8m c2 4

+c zr Inr6a) (208W
r 4r 4

a a

The cut-off relation is obtained by substitution into equations

(194) and (196! relating mass, velocity and voltage. Let k ra/rc;

the resulting relation may be written as
2

VeC 
__[_ec

e V eV) gt k)ý (209)
c 2moc2  Vc 2moc 2

where

4-4k 4 + k6  1/k?+8kZ ink
(kk -10)

As a check on the result, we note that the limit of g k) as

k -*1 is 4/3, resulting in the cut-off condition as in the planar

case. The function gfk) is shown in Fig. 33. Since g(k) stays at

a value near 1, the reduction in cut-off voltage due to relativistic
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effects is of the same order of magnitude for cylindrical geometry

as for planar geometry. This effect is of the order of 15% reduction

in cut-off voltage when the classical cut-off voltage is 50 KV.
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